壳聚糖修饰多黏菌素B脂质体联合超声微泡对生物膜态鲍曼不动杆菌协同抗菌作用

付钰莹, 余娴, 李攀, 曹阳, 刘成伟, 胡帮芹

中国药学杂志 ›› 2018, Vol. 53 ›› Issue (4) : 283-289.

PDF(1920 KB)
PDF(1920 KB)
中国药学杂志 ›› 2018, Vol. 53 ›› Issue (4) : 283-289. DOI: 10.11669/cpj.2018.04.009
论著

壳聚糖修饰多黏菌素B脂质体联合超声微泡对生物膜态鲍曼不动杆菌协同抗菌作用

  • 付钰莹1, 余娴1*, 李攀2, 曹阳2, 刘成伟3, 胡帮芹4
作者信息 +

Synergetic Antibacterial Effect of Ultrasound Microbubbles Combined with Chitosan- Modified Polymyxin B Liposomes on Biofilm-producing Acinetobacter baumannii

  • FU Yu-ying1, YU Xian1*, LI Pan2, CAO Yang2, LIU Cheng-wei3, HU Bang-qin4
Author information +
文章历史 +

摘要

目的 探讨壳聚糖修饰的多黏菌素B脂质体联合超声微泡对生物膜态鲍曼不动杆菌(AB)的体外协同抗菌作用。方法 采用注入法制备壳聚糖修饰的多黏菌素B脂质体(c-PMB-Lip),检测不同多黏菌素B制剂对临床分离AB的最小生物膜抑菌浓度(MBIC);进一步探讨壳聚糖修饰的多黏菌素B脂质体组(c-PMB-Lip)、超声微泡+多黏菌素B组(USMB+PMB)、超声微泡+壳聚糖修饰的多黏菌素B脂质体组(USMB+c-PMB-Lip)对生物膜态AB的抗菌作用,并分析其抗菌效应的量效关系。结果 c-PMB-Lip对生物膜态AB的MBIC为(8.0±2.0)μg·mL-1;超声微泡能增强抗菌药物多黏菌素B对生物膜态AB的抑制作用;而超声微泡联合脂质体制剂可得到更为显著的抗生物膜态AB效应,甚至可以完全清除生物膜态AB;各组随着药物浓度的增加,在一定范围内与其抗菌作用呈现量效关系;同无菌空白对照组相比,USMB+c-PMB-Lip在2 μg·mL-1时几乎能够完全清除细菌生物膜并达到最大抗菌效应(P>0.05)。结论 壳聚糖修饰的多黏菌素B脂质体联合超声微泡对生物膜态AB具有显著的协同抗菌作用。

Abstract

OBJECTIVE To investigate the synergetic antibacterial effects of chitosan-modified polymyxin B liposomes(c-PMB-Lip) combined with ultrasound microbubbles on biofilm-producing Acinetobacter baumannii(AB) in vitro. METHODS c-PMB-Lip was prepared by an injection method. The minimum biofilm inhibition concentrations (MBIC) of the AB clinical isolates treated with different preparations of polymyxin B were determined. The antibacterial effects and the dose-effect relationship of chitosan-modified polymyxin B liposome group (c-PMB-Lip), ultrasound microbubble + polymyxin B group (USMB+PMB) and ultrasound microbubble + chitosan modified polymyxin B liposome group (USMB+c-PMB-Lip) were further revealed. RESULTS The MBIC of c-PMB-Lip was (8.0±2.0)μg·mL-1 against biofilm-producing AB. USMB could enhance the inhibitory effects of polymyxin B on biofilm-producing AB. Moreover, USMB combined with lipid agents could obtain the most significant inhibitory effects and even completely remove the biofilm-producing AB. With the drug concentration increasing, the antibacterial effects of each group showed a dose-effect relationship within a certain range. Compared with the sterile blank group, USMB+c-PMB-Lip could completely remove the bacterial biofilm and achieve a maximum antibacterial effects at 2 μg·mL-1(P>0.05). CONCLUSION c-PMB-Lip combined with USMB have significant synergistic antibacterial effect on biofilm-producing AB.

关键词

脂质体 / 壳聚糖 / 超声微泡 / 鲍曼不动杆菌 / 生物膜 / 药物递送系统

Key words

liposome / chitosan / ultrasound microbubble / Acinetobacter baumannii / biofilm / drug delivery system

引用本文

导出引用
付钰莹, 余娴, 李攀, 曹阳, 刘成伟, 胡帮芹. 壳聚糖修饰多黏菌素B脂质体联合超声微泡对生物膜态鲍曼不动杆菌协同抗菌作用[J]. 中国药学杂志, 2018, 53(4): 283-289 https://doi.org/10.11669/cpj.2018.04.009
FU Yu-ying, YU Xian, LI Pan, CAO Yang, LIU Cheng-wei, HU Bang-qin. Synergetic Antibacterial Effect of Ultrasound Microbubbles Combined with Chitosan- Modified Polymyxin B Liposomes on Biofilm-producing Acinetobacter baumannii[J]. Chinese Pharmaceutical Journal, 2018, 53(4): 283-289 https://doi.org/10.11669/cpj.2018.04.009
中图分类号: R944   

参考文献

[1] LI Y, MA C P, XU T.Analysis of clinical distribution and drug resistance of acinetobacter baumella in 2012-2016[J].Chin J Nosocomiol(中华医院感染学杂志), 2017(8):1685-1688.
[2] SONG J Y, CHEONG H J, NOH J Y,et al. In vitro comparison of anti-biofilm effects against carbapenem-resistant Acinetobacter baumannii: imipenem, colistin, tigecycline, rifampicin and combinations[J]. Infect Chemother, 2015, 47(1): 27-32.
[3] GOPAL R, KIM Y G, LEE J H,et al.Synergistic effects and antibiofilm properties of chimeric peptides against multidrug-resistant Acinetobacter baumannii strains[J].Antimicrob Agents Chemother, 2014, 58(3): 1622-1629.
[4] GIAMARELLOU H.Multidrug-resistant Gram-negative bacteria: how to treat and for how long[J].Int J Antimicrob Ag, 2010, 36:50-54.
[5] FORIER K, RAEMDONCK K, DE SMEDT S C,et al.Lipid and polymer nanoparticles for drug delivery to bacterial biofilms[J].J Controlled Release, 2014, 190: 607-623.
[6] DRULIS-KAWA Z, DOROTKIEWICZ-JACH A. Liposomes as delivery systems for antibiotics[J]. Int J Pharm, 2010, 387(1-2): 187-198.
[7] DUTTAGUPTA D S, JADHAV V M, KADAM V J.Chitosan: a propitious biopolymer for drug delivery[J].Curr Drug Deliv, 2015, 12(4): 369-381.
[8] YANG Z, LIU J, GAO J, et al. Chitosan coated vancomycin hydrochloride liposomes: characterizations and evaluation[J]. Int J Pharm, 2015, 495(1): 508-515.
[9] MANCONI M, MANCA M L, VALENTI D,et al.Chitosan and hyaluronan coated liposomes for pulmonary administration of curcumin[J].Int J Pharm, 2017, 525(1): 203-210.
[10] DONG Y, CHEN S, WANG Z,et al.Synergy of ultrasound microbubbles and vancomycin against Staphylococcus epidermidis biofilm[J].J Antimicrob Chemother, 2013, 68(4): 816-826.
[11] ZHU H X, CAI X Z, YAN S G.Research progress on enhancement of antimicrobial efficacy of antibiotic by low-frequency[J]. Int J Orthop(国际骨科学杂志), 2009, 30(5): 275-277.
[12] DONG Y, XU Y, LI P,et al.Antibiofilm effect of ultrasound combined with microbubbles against Staphylococcus epidermidis biofilm[J]. Int J Med Microbiol, 2017, 307(6): 321-328.
[13] BAI W, ZHANG W, HU B,et al.Liposome-mediated transfection of wild-type P53 DNA into human prostate cancer cells is improved by low-frequency ultrasound combined with microbubbles[J].Oncol Lett, 2016, 11(6): 3829-3834.
[14] WANG M, ZHAO T, LIU Y,et al.Ursolic acid liposomes with chitosan modification: promising antitumor drug delivery and efficacy[J].Mater Sci Eng: C, 2017, 71: 1231-1240.
[15] ELLINGTON M J, EKELUND O, AARESTRUP F M,et al.The role of whole genome sequencing in antimicrobial susceptibility testing of bacteria: report from the EUCAST subcommittee[J]. Clin Microbiol Infect, 2017, 23(1): 2-22.
[16] ZHU T, LI Y J.Study on the preparation method of water-soluble drug liposome encapsulation rate[J].Heilongjiang Tech Inf(黑龙江科技信息), 2015,(21): 77.
[17] BRANDENBURG K S, RUBINSTIN I, SADIKOT R T, et al. Polymyxin B self-associated with phospholipid nanomicelles[J]. Pharm Dev Technol, 2012, 17(6): 654-660.
[18] LIU Y, LIU D, ZHU L,et al.Temperature-dependent structure stability and in vitro release of chitosan-coated curcumin liposome[J].Food Res Int, 2015, 74: 97-105.
[19] MARIER J F, LAViIGNE J, DUCHARME M P. Pharmacokinetics and efficacies of liposomal and conventional formulations of tobramycin after intratracheal administration in rats with pulmonary Burkholderia cepacia infection[J]. Antimicrob Agents Chemother, 2002, 46(12): 3776-3781.
[20] JAMIL B, HABIB H, ABBASI S,et al.Cefazolin loaded chitosan nanoparticles to cure multi drug resistant Gram-negative pathogens[J].Carbohydr Polym, 2016, 136: 682-691.
[21] WALTERS M R, ROE F, BUGNICOURT A,et al.Contributions of antibiotic penetration, oxygen limitation, and low metabolic activity to tolerance of Pseudomonas aeruginosa biofilms to ciprofloxacin and tobramycin[J].Antimicrob Agents Chemother, 2003, 47(1): 317-323.
[22] HE N, HU J, LIU H,et al.Enhancement of vancomycin activity against biofilms by using ultrasound-targeted microbubble destruction[J].Antimicrob Agents Ch, 2011, 55(11): 5331-5337.
[23] HERROT S, KLIBANOV A L.Microbubbles in ultrasound-triggered drug and gene delivery[J].Adv Drug Deliv Rev, 2008, 60(10): 1153-1166.

基金

重庆市卫生计生委重点项目资助(2016ZDXM010)
PDF(1920 KB)

136

Accesses

0

Citation

Detail

段落导航
相关文章

/